
JNMRBE

Abstract

A (partial) taxonomy of software applications devoted to
sounds is presented. For each category of software applica-
tions, an abstract model is proposed an actual implementa-
tions are evaluated with respect to this model.

1 Introduction

In recent years, the increased power and affordability of
personal workstations has fostered a vast variety of software
applications devoted to sounds and their musical use.

The aim of this tutorial is to present currently available
applications in the field stressing the taxonomical aspect of
different approaches and functions. The following categories
will be introduced and developed:

• Languages for sound processing
• Inline sound processing
• Software to teach signal processing
• Processing libraries, plug-ins and toolkits

The tutorial will show abstract models for each category
describing difficulties and problems encountered in actual
implementations, while attempting to illustrate and evaluate
user interaction and control in diverse situations. Examples
of actual programs will be shown, stressing the functionali-
ties they intended to fulfil by design and their usage in real-
world situations.

Another division will be drawn between buffered and
unbuffered (sample-by-sample) processing – advantages and
problems of both conceptions will be described. This cate-
gorisation has been preferred over the real-time/non-real-
time one, since the fast technological evolution allows to
think that the latter is going to be a smaller matter of concern
in the near future – the ability of entering and exiting real-

time, however, will be covered extensively to show advan-
tages and disadvantages of specialised implementations
versus generic ones. Other issues that will be addressed are:

• Availability
• Portability on different platforms
• Cost
• Complexity of use and learning curve
• Compatibility with other software
• Modifiability and expandability
• Integration with existing working environments and

practices

Finally, some issues that still lie partially unresolved such
as fast network interoperability, parallelisation and musical
control will be mentioned; future directions of development
will be proposed.

2 Languages for sound processing

2.1 Abstract models

The most successful model for languages dedicated to
sound processing dates back to the late fifties, when Max
Mathews developed a collection of programs (called Music
I–II– . . . –N) at the Bell Laboratories.1 One of these pro-
grams is the Music V sound-synthesis language, which estab-
lished a standard based on the concept of unit generator
(UG). The UGs are primitive modules for generating, modi-
fying, and acquiring audio or control signals: UGs that can

Accepted: 8 December, 2001

Correspondence: Nicola Bernardini, Centro Tempo Reale, Villa Strozzi, Via Pisana 77, 501143 Florence, Italy. Tel.: +39 (55) 717270.
E-mail: nicb@centrotemporeale.it.

Making Sounds with Numbers: A Tutorial on Music Software

Dedicated to Digital Audio

Nicola Bernardini1 and Davide Rocchesso2

1Centro Tempo Reale Firenze, Italy; 2Dipartimento Scientifico e Tecnologico, Università di Verona, Italy

Journal of New Music Research 0929-8215/01/2205-367$16.00
2002, Vol. 22, No. 5, pp. ••–•• © Swets & Zeitlinger

1 For a good historical survey of sound and music languages we
recommend the textbook by C. Roads [Roa96].

2 Nicola Bernardini and Davide Rocchesso

perform cyclic or acyclic readings of sample tables are essen-
tial to produce audio signals whereas UGs for envelopes and
low-frequency oscillators are available to produce control
signals. To modify audio signals in the time or frequency
domain, it is useful to have UGs which implement various
forms of digital filters, such as delay lines or resonators.

According to the Music-N tradition, the UGs are con-
nected as if they were modules of an analog synthesizer, and
the resulting patch is called an instrument. The actual con-
necting wires are variables whose names are passed as argu-
ments to the UGs. An orchestra is a collection of instruments.
For every instrument, there are control parameters which can
be used to determine the behaviour of the instrument. These
parameters are accessible to the interpreter of a score, which
is a collection of time-stamped invocations of instrument
events (called notes). Figure 1 shows a schematic description
of how Music-N languages work: (a) is a Music-V source
text2 while (b) is its graphical representation. The orches-
tra/score metaphor, the decomposition of an orchestra
into non-interacting instruments, and the description of a
score as a sequence of notes, are all design decisions
which were taken in respect of a traditional view of
music. However, many musical and synthesis processes do
not fit well in such a metaphorical frame. As an example,
consider how difficult it is to express modulation pro-
cessing effects that involve several notes played by a single
synthesis instrument (such as those played within a single
violin bowing): it would be desirable to have the possibility
of modifying the instrument state as a result of a chain of
weakly synchronised events (that is, to perform some sort
of per-thread processing). Instead, languages such as Music
V rely on special initialisation steps encoded within instru-
ments to handle articulatory gestures involving several
pitches.

Currently, the most widely used language for sound syn-
thesis is Csound developed by Barry Vercoe at MIT,3 which

is strictly adherent to the original dictates of Music V while
improving it on the symbolic aspect and versatility. There are
several graphic helpers running on different platforms to
assist musicians in writing Csound orchestras and scores: the
most widely used are Cecilia developed by Jean Piche’ and
Alexandre Burton4 and WcShell developed by Riccardo
Bianchini.5

Another popular Music-N-like language is Cmusic6

[Moo90, Pop93], which we will mention again in section 5.1
as an example of integration of a sound-processing language
into a software environment making extensive use of the
facilities provided by Unix operating systems.

Other models have been proposed for dealing with less
rigid descriptions of sound and music events. One such
model is tied to the language Nyquist,7 developed by the team
of Roger Dannenberg at the Carnegie Mellon University
[Dan97c]. This language provides a unified treatment of
music and sound events and is based on functional pro-
gramming (Lisp language). Algorithmic manipulations of
symbols, processing of signals, and structured temporal
modifications are all possible without leaving a consistent
framework. In particular, Nyquist exploits the idea of be-
havioural abstraction, i.e., time-domain transformations are
interpreted in an abstract sense and the details are encapsu-
lated in descriptions of behaviours [Dan97a]. In other words,
musical concepts such as duration, onset time, loudness, time
stretching, are specified differently in different UGs. Modern
compositional paradigms benefit from this unification of
control signals, audio signals, behavioural abstractions and
continuous transformations.

Placing some of the most widely used languages for
sound manipulation along an axis representing flexibility
and expressiveness, the lower end is probably occupied by
Csound while the upper one is probably occupied by Nyquist.
Another notable language which lies somewhere in between
is Common Lisp Music8 (CLM), which was developed by Bill
Schottstaedt as an extension of Common Lisp [Sch94]. If
CLM is not too far from Nyquist (thanks to the underlying
Lisp language) there is another language closer to the other
edge of the axis, which represents a “modernisation” of
Csound. The language is called SAOL9 and it has been
adopted as the formal specification of Structured Audio for
the MPEG-4 standard [VGS98]. SAOL orchestras and scores
can be translated into C language by means of the software
translator SFRONT10

http: //www.cs.berkeley.edu/~lazzaro/sa/ developed by John
Lazzaro and John Wawrzynek at UC Berkeley.

JNMRBE

OUT

B2

OSC
F2

P5 P6

SC
O

RE
IN

ST
R

a) b)

Fig. 1. Music-V file description.

2 picked up from [MMM+69, page 45].
3 ftp://ftp.maths.bath.ac.uk/pub/dream/

4 http://www.musique.umontreal.ca/electro/CEC/
5 http://www.fabaris.it/bianchini/wcshell541.zip
6 http://www-crca.ucsd.edu/cmusic/cmusic.html
7 http://www.cs.cmu.edu/rbd/nyquist.html
8 http://www-ccrma.stanford.edu/software/clm/
9 http://www.saol.net

10 http://www.cs.berkeley.edu/lazzaro/sa/

Making sounds with numbers 3

2.2 Design issues

2.2.1 Samples vs. blocks

Since the introduction of early computer music software,
there has been some debate about the way of computing
samples by means of signal processing algorithms. Control
signals vary with a rate lower than the audio sample rate and
it makes sense to collect blocks of samples produced by tight
loops and pass these blocks along the signal processing
flowgraph. In general purpose architectures, this strategy
introduces significant savings (up to a factor of 7 in Csound
[DT97]) connected to the better use of registers.11 Another
source of savings comes from the fact that control signals are
updated at control rate, typically at block boundaries. This
coarse time-discretization often produces audible artifacts
which can be reduced either by reducing the block size (thus
loosing some of the benefits in performance) or by intro-
ducing interpolation in control signals. It appears that the
most efficient strategy is to incorporate control-signal inter-
polation within UGs [DT97]. We think that this kind of signal
degradation due to blocking is generally acceptable, espe-
cially if one uses large blocks for preparatory sketches and
small or no blocking for the final rendering. However, there
is a much more serious category of artifacts due to blocking
that cause serious headaches to many sound designers
[Pop93, page 37]. These appear whenever there is feedback
in a signal processing patch. For instance, explicit computa-
tion of a recursive filter often requires feeding back signals
which are delayed by one sample only. This can not be done
unless the block size is set to one. If the block size takes
different values, the resulting spectra are wildly affected by
imaging and aliasing. This second species of artifacts are
particularly bad because they are all but the kind of gentle
degradation that can be tolerated during preparatory
sketches. Since these artifacts have a semantic nature and it
is not easy to extend a language to deal with them, we prefer
the solution taken by CLM and SAOL where all audio signals
are computed sample-by-sample. In particular, SAOL keeps
the distinction between audio rate and control rate, using it
only to have sparse updating of control signals and not for
dividing audio-rate computations into blocks. This doesn’t
exclude the possibility of implementing block-oriented UGs
(such as FFTs): they simply put a sample in a buffer every
time they are called and compute the operation when the
buffer is full.

2.2.2 Performance

Nowadays, general purpose computer architectures are fast
enough to accommodate real-time performance of medium-
size sound processing algorithms. In the recent past, it was

thought that computation-intensive chores could take advan-
tage of boards containing Digital Signal Processors. This was
the approach taken by CLM, which could benefit of UGs
coded in the assembly language of the DSP Motorola 56000,
present in NeXT computers. Currently, the speed and pro-
cessing power of CPUs has increased so much that floating-
point C-language CPU implementations are often faster than
fixed-point assembly-language implementations on DSPs.
And of course it is much easier to implement a UG in C using
floating-point arithmetic.

Benchmarks on implementations of various sound-
processing languages show that there are no dramatic differ-
ences in performance [Pop93, Dan97b] when the same block-
ing policy is chosen. In particular, it is interesting to note that
the expressiveness of Nyquist as compared to Csound is
obtained with no efficiency losses. Just to mention a few of
the advantages shown by Nyquist, sounds can be treated as
any other argument in function calls and they can be tempo-
rally transformed on the fly by means of behavioural abstrac-
tions. Moreover, blocking in Nyquist is not subject to the
restrictions of Csound, where note quantisation matches the
control rate [Dan97b]. However, Nyquist is designed to
perform well when used with large block sizes, thus incurring
in the semantic pitfall mentioned above where patches with
feedback are designed. Problems are also likely to arise when
using Nyquist in real-time sound processing, where tolerable
I/O latencies impose small blocks, and interactive control
(e.g., via MIDI) doesn’t seem to agree too well with the inter-
nal representation of sounds as atomic entities [Dan97c].

So far, the designers of sound languages have not cared
much of the characteristics of modern architectures when
performing their optimisations. Again, a notable exception is
found in [DT97]. Current computers have an organisation of
memory hierarchy such that: (i) reads are more expensive
than writes, (ii) space locality in a memory reference pattern
improves performance, (iii) access to tables whose addresses
fit all in the Translation Look-aside Buffer is faster. These
features can be exploited when designing the UGs. Other
improvements, such as good use of the pipeline, loop
unrolling, replacement of expensive operations, are typically
performed by the compiler when it analyses the code of UGs.
The languages where instruments are actually compiled
rather than interpreted can benefit from compiler-based
global optimisations. In fact, the chances for optimisation
and extraction of parallelism increase with the increased
mean length of basic blocks. For instance, CLM tries to trans-
late instruments into C code which can then be compiled.

In the future, architectures having multiple CPUs will
become widely available.12 Therefore, it is important that
sound languages can take advantage of multiprocessing by
assigning loosely connected threads of computation (e.g.,
different notes) to different CPUs. This can be done fairly

JNMRBE

11 Dannenberg and Thompson have shown that blocking is almost
insensitive to the memory hierarchy due to prefetching of long
cache lines [DT97].

12 E.g., the Intel Itanium http://www.intel.com/itanium/index.htm
architecture supports inexpensive and extensive multiprocessing.

4 Nicola Bernardini and Davide Rocchesso

easily by using compilers that support parallel blocks,
parallel loops, and shared variables. We can expect most
future sound languages to be able to distribute computations
automatically among the available CPUs.

2.2.3 Extensibility

A very important point driving the choice of a sound
language is its extensibility. This feature is twofold: on the
one hand it can be seen as the possibility of using syntactic
structures of a high-level language within an instrument
definition; on the other hand it can be seen as the possibility
of enriching the set of UGs. The former feature is provided,
among the languages mentioned so far, only by CLM and
Nyquist, since any Lisp statement can be used within instru-
ments. The latter feature is somewhat provided by all the
languages, with varying degrees of flexibility. For example,
extending the set of UGs of Csound is a matter of adding
some C code and recompiling the sources. Unfortunately, this
task can be daunting due to the intricacy of the source code.
We also regret the fact that, since this is the only way of
extending Csound, a plethora of extensions blossomed during
the last decade, with the double effect of leading to unman-
ageable code and creating many incompatible versions. In
this respect, an orthogonal approach is taken by the ISO
Committee that adopted SAOL as the standard language
for specifying Structured Audio in MPEG-4: extensibility
is limited by the fact that the set of UGs is standardised.13

The hope of the proponents is that a sound-processing
language “carved in stone” will be widely adopted by most
multimedia-device manufacturers, as it happened with
MIDI in the eighties.

In CLM, user-defined generators can be written in C
language and interfaced by means of Lisp macros. Moreover,
since general programming structures can be used within
instruments and these can be translated into fast C code,
the need of user-provided additions to the core language
is alleviated.

In Nyquist, integrating user-defined generators implies
using a tool which translates specifications of behaviours into
actual C code, which is then compiled and linked into
Nyquist. Without this tool, the complexity of behavioural
abstractions would make it very difficult for a user to write
a UG from scratch and to integrate it into Nyquist.

2.2.4 Dealing with audio effects

It is interesting to see how different sound languages deal
with digital audio effects, i.e., instruments designed for
modifying rather than generating sounds.

In Csound, effects are like any other instrument: they are
invoked as “notes” from the score, and they receive input

sounds through the use of global variables. Any well-
structured language would rather deprecate than enforce the
use of global variables.

In CLM, any effect is assimilated to a reverberator. The
macro with-sound, which is responsible for producing a note,
operates a clear distinction between generation and process-
ing. For example, the following statement instantiates a note
from the instrument sweep and sends the result to the
processing unit echo:

(with-sound
(:reverb echo

:reverb-data (1.0 0.1))
(sweep “march.wav”:duration 25.0

:freq-env’ (0 0.0 100 1.0)))

Incidentally, note that the instrument sweep accepts as
parameters a string representing a filename, a floating point
number, and a list of points representing an envelope.

The approach to effect processing taken by Nyquist is the
most elegant. Since scores and instruments are specified
using the same high-level language, one can write functions
that perform scores and use the result (which is a variable of
type SOUND) as argument to functions that perform effects.
For instance, with the properly defined functions flanger and
arpeggio, the following statement would be valid in Nyquist:

(flanger (arpeggio c2 e2 g2 c3))

If elegance and generality has been achieved in Nyquist
by devising a rather complicated internal representation of
sounds and behaviours, a neat representation of audio-
processing connections can also be encapsulated within a
Music-N framework. This is best shown by SAOL, which
makes use of the metaphor of the mixing console with
its “send” and “return” audio busses. The descriptions of
complex audio patches turn out to be very terse and highly
communicative, at least to someone previously exposed to
some live audio-engineering practice (see sec. 6.2). As an
example, consider the following code declaring a connection
between a generator and an echo, the latter having two
parameters, delay and amplitude:

route (bus1, generator);
// delay amplitude
send (echo; 0.1, 1.0; bus1);

It is worth noticing how a suite of programs based on
piped communication, such as those described in sec. 5.1,
leads naturally to an elegant way of expressing chains of
sound effects.

3 Inline sound processing

A completely different category of music software deals with
inline sound processing. The software included in this cate-
gory implies direct user control over sound on several levels,
from its inner microscopic details up to its full external form.

JNMRBE

13 However, new UGs can be defined using the standard SAOL
syntax and a macro mechanism

Making sounds with numbers 5

In its various forms, it allows the user to: (i) process single
or multiple sounds (ii) build complex sound structures into
a sound stream (iii) view different graphical representations
of sounds. Hence, the major difference between this category
and the one outlined in the preceding paragraphs lies perhaps
in this software’s more general usage at the expense of less
“inherent” musical capabilities: as an example, the difference
between single event and event organisation (the above-
mentioned orchestra/score metaphor and other organisa-
tional forms) which is pervasive in the languages for sound
processing hardly exists in this category. However, this soft-
ware allows direct manipulation of various sound parameters
in many different ways and is often indispensable in musical
pre-production and post-production stages.

Compared to the Music-N-type software the one of this
category belongs to a sort of “second generation” computer
hardware: it makes widespread and intensive use of high-
definition graphical devices, high-speed sound-dedicated
hardware, large core memory, large hard disks, etc. In fact,
we will shortly show that the most hardware-intensive soft-
ware in music processing – the digital live-electronics real-
time control software – belongs to one of the sub-categories
exposed below.

3.1 Time-domain graphical editing and processing

The most obvious application for inline sound processing is
that of graphical editing of sounds. While text data files lend
themselves very conveniently to musical data description,
high-resolution graphics are fundamental to this specific field
of applications where single-sample accuracy can be sacri-
ficed to a more intuitive sound event global view.

Most graphic sound editors allow to splice and process
sound files in different ways.

As Figure 214 shows the typical graphical editor displays
one or more soundfiles in the time-domain, allowing to

modify it with a variety of tools. The important concepts in
digital audio editing can be summarised as follows:

• regions – these are graphically selected portions of sound
in which the processing and/or splicing takes place;

• in-core editing versus window editing – while simpler
editors load the sound in RAM memory for editing, the
most professional ones offer buffered on-disk editing to
allow editing of sounds of any length: given the current
storage techniques, high-quality sound is fairly expen-
sive in terms of storage (ca. 100 kbytes per second and
growing), on-disk editing is absolutely essential to serious
editing;

• editing and rearranging of large soundfiles can be
extremely expensive in terms of hardware resources and
hardly lend themselves to the general editing features that
are expected by any multimedia application: multiple-level
undos, quick trial-and-error, non-destructive editing, etc.:
several techniques have been developed to implement these
features – the most important one being the playlist, which
allows soundfile editing and rearranging without actually
touching the soundfile itself but simply storing pointers to
the beginning and end of each region. As can be easily
understood, this technique offers several advantages being
extremely fast and non-destructive;

In Figure 3, a collection of soundfiles is aligned on the time
axis according to a playlist indicating the starting time and
duration of each soundfile reference (i.e., a pointer to the
actual soundfile). Notice the on-the-fly amplitude rescaling
of some of the soundfiles.15

JNMRBE

Definition
Region

Controls

Sound Display

Time Scale

Envelope Shaping

Fig. 2. A typical sound editing application.

14 The editor in this example is called Audacity, a Free Software
audio editing and processing application written by Dominic
Mazzoni, Roger Dannenberg et al. [MD01]
(http://audacity.sourceforge.net) for Unix, Windows and MacOs
workstations.

Amplitude Sound FilePlaylist
Region

References
Scalings

Fig. 3. A snapshot of a typical ProToolsTM editing session.

15 ProToolsTM is manufactured by Digidesign
(http://www.digidesign.com)

6 Nicola Bernardini and Davide Rocchesso

Graphical sound editors are extremely widespread on
most hardware platforms: while there is no current favourite
application, each platform sports one or more widely used
editors which may range from the US$ 10000 professional
editing suites for the Apple Macintosh to the many Free Soft-
ware programs for Unix workstations. In the latter category,
it is worthwhile to mention the snd application by Bill
Schottstaedt16 which features a back-end processing in CLM
(see sec. 2). More precisely, sounds and commands can be
exchanged back and forth between CLM and snd, in such a
way that the user can choose at any time the most adequate
between inline and language-based processing.

One last thing: even though they sometimes have some
remote resemblance, editors have nothing to do with other
applications commonly called sequencers. The latter are
event control applications and while they may be very useful
to musical composition they do not offer any signal pro-
cessing facility. But they do get sometimes bundled together
with audio editors, thus generating the common confusion.

3.2 Analysis/resynthesis packages

Analysis/Resynthesis packages belong to a closely related
but substantially different category: they are generally
medium-sized applications which offer different editing
capabilities. These packages are termed analysis/resynthesis
packages because editing and processing is preceded by an
analysis phase which extracts the desired parameters in their
most significant and convenient form; editing is then per-
formed on the extracted parameters in a variety of ways and
after editing, a resynthesis stage is needed to re-transform the
edited parameters into a sound in the time domain. In dif-
ferent forms, these applications do: (i) perform various types
of analyses on a sound (ii) modify the analysis data (iii)
resynthesize the modified analysis.

Many applications feature a graphical interface that allows
direct editing in the frequency-domain: the prototypical
application in this field is Audiosculpt developed by Philippe
Depalle, Chris Rogers and Gilles Poirot at the IRCAM17

(Institut de Recherche et Coordination Acoustique-Musique)
for the Apple Macintosh platform. Based on a versatile FFT-
based phase vocoder called SVP (which stands for Super
Vocodeur de Phase), Audiosculpt is essentially a drawing
program which allows the user to “draw” on the spectrum
surface of a sound.

In Figure 4, some portions of the spectrogram have been
delimited and different magnitude reductions have been
applied to them.

Other applications, such as Lemur,18 (running on Apple
Macintoshes) [FH97] or Ceres (developed by Oyvind
Hammer at NoTam19) perform different sets of operations

such as partial tracking and tracing, logical and algorithmic
editing, timbre morphing, etc.

The contemporary sound designer can also benefit from
tools which are specifically designed to transform sound
objects in a controlled fashion. One such tool is SMS20 (Spec-
tral Modelling Synthesis), designed by Xavier Serra as an
offspring of his and Smith’s idea of analysing sounds by
decomposing them into stochastic and deterministic compo-
nents [SS90] or, in other words, noise and sinusoids. SMS
uses the Short-Time Fourier Transform (STFT) for analysis,
tracking the most relevant peaks and resynthesizing from
them the deterministic component of sound, while the
stochastic component is obtained by subtraction. The
decomposition allows flexible transformations of the analy-
sis parameters, thus allowing good-quality time warping,
pitch contouring, and sound morphing. In order to further
improve the quality of transformations, extensions of the
SMS model have been proposed though not included in the
distributed software yet. Namely, a special treatment of tran-
sients has been devised as the way of getting rid of artifacts
which can easily come into play when severe transformations
are operated [VLM97]. SMS comes with a very appealing
graphical interface under Microsoft Windows, with a web-
based interface, and is available as a command-line program
for other operating systems, such as the various flavours of
Unix. SMS uses an implementation of the Spectral Descrip-
tion Interchange Format,21 which could potentially be used
by other packages operating transformations based on the
STFT. As an example, consider the following SMS synthe-
sis score which takes the results of analysis and resynthesises

JNMRBE

16 http://www-ccrma.stanford.edu/software/snd/
17 http://www.ircam.fr
18 http://www.cerlsoundgroup.org/Lemur/
19 http://www.NoTam.uio.no/

Time-Domain
Envelope

Current
FFT Frame

60

Editing Regions
Spectrogram

Graphic Editing Palette

35

Fig. 4. A typical AudioSculpt session.

20 http://www.iua.upf.es/~sms/
21 http://cnmat.cnmat.Berkeley.edu/SDIF/

Making sounds with numbers 7

with application of a pitch-shifting envelope and an accen-
tuation of inharmonicity:

InputSmsFile march.sms
OutputSoundFile exroc.snd
FreqSine 0 1.2 .5 1.1 .8 1 1 1
FreqSineStretch 0.2

3.3 Interactive graphical building environments

In recent times, several software packages have been written
to ease the task of designing sound synthesis and processing
algorithms. Such packages make extensive use of graphical
metaphors and object abstraction reducing the processing
flow to a number of small boxes with zero, one or more
audio/control inputs and outputs connected by lines, thus
replicating once again the old and well known modular
synthesizer interface taxonomy.

Initially, many such packages where created to tame the
daunting task of writing specialised code for dedicated signal
processing tasks. In these packages, each object would
contain some portion of DSP assembly code or microcode
which would be loaded on-demand in the appropriate DSP
card. With a graphical interface the user would easily con-
struct, then, complex DSP algorithms with detailed controls
coming from different sources (audio, MIDI, sensors, etc.).
Several such applications still exist and are fairly widely used
in the live-electronics music field (just to quote a few of the
latest (remaining) ones): the Kyma/Capybara environment
written by Carla Scaletti and Kurt Hebel,22 the ARES
software developed by the software team at IRIS-Bontempi,
the Fly30 environment written by Michelangelo Lupone and
Laura Bianchini at CRM-Rome,23 and the Scope package
produced by the German firm Creamware.24

While these specialised packages are bound to disappear with
the rapid and manifold power increase of general purpose
processors,25 the concept of graphic object-oriented abstraction
to easily visually construct signal processing algorithms has spur
an entire new line of software products.

The most widespread one is indeed the Max package suite
conceived and written by Miller Puckette at IRCAM. Born
as a generic MIDI control logic builder, this package has
known an enormous expansion in its commercial version
produced by Cycling ’74 and maintained by Dave Zicarelli.26

A recent extension to Max written by Zicarelli is MSP which
features real-time signal processing objects on Apple Power-
Macs (i.e., on general-purpose RISC architectures). Another

interesting path is being currently followed by Miller
Puckette himself who is the principal author of Pure Data
(PD) [Puc97], an open-source public domain counterpart of
Max which handles MIDI, audio and graphics (extensions by
Mark Danks27). PD is developed keeping the actual process-
ing and its graphical display as two cooperating separate
processes, thus enhancing portability and easily modelling
its processing priorities (sound first, graphics later) on the
underlying operating system thread/task switching capabili-
ties. PD is currently a very early-stage work-in-progress but
it already features most of the graphic objects found in
the experimental version of Max plus several audio signal
processing objects. Its tcl/tk graphical interface makes
its porting extremely easy (virtually “no porting at all”).28

4 Software to teach audio signal processing

Audio signal processing is essentially an engineering disci-
pline. Since engineering is about practical realizations the
discipline is best taught using real-world tools rather than
special didactic software. At the roots of audio signal pro-
cessing there are mathematics and computational science:
therefore we strongly recommend using one of the advanced
math softwares available off the shelf. In particular, we expe-
rienced teaching with MatlabTM,29 or with its Free Software
counterpart Octave.30 Even though much of the code can be

JNMRBE

22 http://www.symbolicsound.com
23 http://www.axnet.it/crm
24 http://www.creamware.de
25 This is not a personal but rather a classic Darwinian considera-
tion: the maintenance costs of such packages added to the intrinsic
tight binding of such code with rapidly obsolescent hardware
exposes them to an inevitable extinction.
26 http://www.cycling74.com

Audio Modules

Control Path

Audio Path

Fig. 5. A Pd screen shot.

27 http://www.danks/org/mark/GEM/
28 Pure Data currently runs on Silicon Graphics workstations, on
Linux boxes and on Windows NT platforms; sources and binaries
can be found at http://crca.ucsd.edu/~msp/software.html
29 http://www.mathworks.com
30 http://www.octave.org

8 Nicola Bernardini and Davide Rocchesso

ported from MatlabTM to Octave with minor changes, there
can still be some significant advantage in using the com-
mercial product. Even though a student edition is available
at low cost, MatlabTM is expensive and every specialised
toolbox is sold separately. On the other hand, Octave is free
software distributed under the GNU public license. It is
robust, highly integrated with other tools such as Emacs for
editing and GNUPlot for plotting.

In MatlabTM/Octave, monophonic sounds are simply one-
dimensional vectors, so that they can be transformed by
means of matrix algebra, since vectors are firstclass vari-
ables. In these systems, the computations are vectorized, and
the gain in efficiency is high whenever looped operations on
matrices are transformed into compact matrix-algebra nota-
tion [Arf98]. This peculiarity is sometimes difficult to assim-
ilate by students, but the theory of matrices needed in order
to start working is really limited to the basic concepts and
can be condensed in a two-hours lecture.

MatlabTM and Octave are great tools for illustrating the
concepts of sampling, quantisation, aliasing, windowing, etc.
It is possible to visualise spectra and signals under different
conditions with very small scripts. For example, the follow-
ing script plots the spectra of a continuous-time complex
exponential, of its discrete-time version sampled at 50 Hz,
and of its sampled and windowed version:

a = -10.0; b = 100; s0 = a + i *b;
t = [0 :0.001 :1];
y = exp(s0* t); %complex exponential
f = [0 :0.1 :100]; Fc = 50; %50Hz s-rate
%closed-form Fourier transform
Y = 1./(i *2*pi* f - s0*ones(size(f)));
plot(f, 20 * log10(abs(Y))); hold on;
%Fourier transform for sampled signal
Ysamp = 1./(1 - exp(s0/Fc)*exp(-i *2*pi* f/Fc))/Fc;
plot(f, 20 * log10(abs(Ysamp)));
n = [0 :6]; y = exp(s0*n/Fc);
%Fourier transform for windowed sampled sig.
Ysampw = y*exp(-i *2*pi/Fc*n’* f)/Fc;
plot(f, 20 * log10(abs(Ysampw)));

producing the plots shown in Figure 6. A Signal Process-
ing Toolbox with plenty of routines for signal manipulation
and filter design can be purchased to be used within Mat-
labTM. However, pedagogical needs can be largely satisfied
by public-domain routines.31 By using these routines it is pos-
sible, for example, to plot a time-frequency representation of
a sound S by introducing the two lines:32

SS = stft(S);
mesh(20* log10(SS));

5 Processing libraries, plug-ins and toolkits

5.1 Processing libraries and toolkits

Aside from complete and self-contained applications,
another musical field in which several energies are being
spent is that of tools and toolkits to perform specific pro-
cessing tasks in a cooperative environment made of several
small instances of such programs. These tools have different
names (e.g., libraries, plug-ins, toolkits, etc.) and take up
different forms (e.g., libraries of C functions and modules,
dynamically linked modules, full-blown applications, etc.)
but they essentially serve the same purpose. One of the most
effective ways of providing extensibility to a software system
is to design it as a suite of independent programs, and to let
them communicate by means of mechanisms of the underly-
ing operating system, e.g., Unix pipes and Inter-Process
Communication. An interesting example of this kind of
design is found in pipewave, a suite of programs designed to
arrange and analyse psychoacoustic tests. Data are passed
between programs as ASCII streams using Unix pipes. The
choice of ASCII as a format for signals allows surgical
operations via text editors, effective compression via regular
compression tools, and manipulation by independently-
conceived programs, such as Octave (see sec. 4). As an
example of pipewave in action, consider the task of plotting
and storing to file the lowpass-filtered version of a 1-second
Gaussian white noise sampled at 22050 Hz. This can be
easily achieved by the following script, where filtering is
performed in the frequency domain:

gaussian -s 22050 22050 | fft -p | \
ffilt -c 0 -10 2000 -40 | ift | \
store -o fnoise | plot

JNMRBE

31 Collections of octave scripts and functions are available from
http://www.sourceforge.net
32 A course reader on sound processing with several examples
produced using Octave is available on line
http://profs.sci.univr.it/~rocchess/htmls/corsi/SoundProcessing/ For
a general description of digital audio effects with typical imple-
mentations in standard MatlabTM code cf. [Zö2]

-55

-50

-45

-40

-35

-30

-25

-20

-15

 0 20 40 60 80 100

closed-form Fourier Transform
sampled signal (spectrum)

Windowed signal (spectrum)

Fig. 6. Plots produced with the Octave example above.

Making sounds with numbers 9

A strong advantage of using pipes is that the communicating
programs can be written in entirely different programming
languages and environments, so that it is possible to over-
come the limitations of every single programming system
(e.g., the Windowing Toolkit of Java can be used in a
program, and low-level access to the sound device can be
exerted in another program).

Pipes have been used extensively in the CARL software
environment of the University of California, San Diego too
[Pop93]. This environment includes the Cmusic sound-
processing language and a plethora of tools such as rever-
berators, a spatializer, table generators, all communicating
via floating-point streams passed through pipes. In practice,
the Cmusic language can be extended without modifying
the Cmusic program itself.

Cmix is another sound-processing system which is based
on the idea of having many small programs rather than a
monolithic software.33 However, while in the CARL software
environment there are satellites of a Music-N-like core, in
Cmix there is not such a core, as there are just C functions
which can be called within regular C programs. This greatly
increases the possibilities of the sound designer, even though
extensive knowledge of the C programming language is
required. In particular, compact scores can be written using
complex control structures, thus extending the crude note-
list habit of Music-N-like languages. Cmix has been recently
turned into a C++ system of classes, fitted with an efficient
scheduler and with support for remote client requests via
TCP/IP sockets. The new system is called RTcmix34

[GT97],to emphasise the fact that sound computations can
be done in real-time on stand-alone or networked worksta-
tions. A similar system is the Synthesis Toolkit (STK)35 devel-
oped by Perry Cook and Gary Scavone: a collection of
sound-processing modules written as C++ classes which are
particularly effective for representing complex sound
synthesis patches, such as those found in physical models.
STK runs under Unix or Microsoft Windows, and supports
real-time input/output audio and MIDI streaming.

Another widely diffused tool (in the Macintosh world) is
Soundhack, a stand-alone set of processing algorithms written
by Tom Erbe.36 While its interface (see Fig. 7) may get close
to a traditional sound editor, its functionality is hardly that of
cutting and splicing: SoundHack offers traditional tools
coupled with less traditional processing like hybrid mutations,
binaural placement and wavetable convolution.

5.2 Plug-ins

In recent times, new dynamic run-time linking technologies
have allowed a different approach to the design of digital

audio effects: the ability to load additional portions of code
at run-time allows applications to be written by different
software developers and to be built at different times. Such
portions of code are called plug-ins. They usually reside in
compiled form in some directory defined by the calling appli-
cation, and by just putting them in that directory they are
made available for loading at run time. Any application
engine (such as an editor, a software synthesis language, etc.)
may define an API (Application Programming Interface)
with which it finds, calls and uses its relevant plug-ins.

A non-trivial consideration in this approach is that if the
API is standardised for a given functionality (e.g., in this
case, audio processing) plug-ins may be applied to all appli-
cations which use that API, therefore multiplying their pos-
sibilities of usage. While it may seem that standardising an
API for sound processing would be a fairly simple endeav-
our, the usual degenerate practices which take place in
current commercial software development have lead to
several de-facto standards:

• Steinberg’s VST TM, in which the API, though proprietary,
is open-source (downloadable from their site www.
steinberg.de) and runs on PC and Macintosh platforms

• Microsoft’s DirectX TM (proprietary API), which runs on
PCs

• DigidesignTM (proprietary API), which runs on
Macintoshes

While VST is currently the most diffused plug-in stan-
dard, counting plug-ins by the thousands and support-
ing applications by the hundreds, several efforts have
been made to produce a Free Software API which may be
adopted as a general reference. The most important one
to-date is the LADSPA (Linux Audio Developer’s Simple
Plug-in API).

JNMRBE

33 http://www.music.princeton.edu/winham/cmix.html
34 http://music.columbia.edu/cmc/research/#RTcmix
35 http://www-ccrma.stanford.edu/software/stk/
36 http://www.soundhack.com/

Information
Soundfile

Input
Sonogram

Run-Time
Control

Fig. 7. A SoundHack screen shot.

10 Nicola Bernardini and Davide Rocchesso

Among the plug-ins sets which are worthwhile mention-
ing, perhaps the most important one is the GRM Tools (main-
tained by Emmanuel Favreau at GRM in Paris) [Fav98]. The
GRM Tools was initially designed as a stand-alone applica-
tion to replicate in the digital domain the effects that were a
special feature of the Groupe de Recherches Musicales active
at the French radio since 1948. The effects included many
types of filtering, delay and resampling modules and algo-
rithmic splicing. These tools are being offered (commer-
cially) as plug-in modules for popular PC and Macintosh
editors/sequencers like ProToolsTM and Cubase VST TM.

6 Other issues

There are several general software development issues that
do not belong to any particular music software approach or
category. However, in music software these issues have often
been underestimated: with few exceptions in both the com-
mercial and the Free Software domains music software is
known to be badly designed, poorly developed and conse-
quently often bugged by ill-defined problems.

Some of these issues are:

• portability and availability on different platforms
• integration with existing practice and working

environments

6.1 Portability and availability under
different platforms

Portability problems manifest themselves differently in the
commercial and in the Free Software domains.

In the commercial domain, up until very recently the
software houses assumed that a musician would be such a
computer illiterate to be forced to choose her/his computer
platform according to the software used (and not the oppo-
site, as normal logic would lead to think). In the best case,
interoperability, file exchange, inter-application communi-
cation were words allowed only among the same firm’s
products on the same platform (and often the same version
number too). With recent changes in commercial operating
system trends and politics (combined with musicians becom-
ing a little pickier about computers) these software houses
were faced with some mandatory multi-platform software
shift, which will probably lead, in some future, to better
thought-out designs. Another problem that plagues the design
of many commercial applications is the need to fulfil many
radically different functions to satisfy the widest customer
base: the applications are often too big, slow and non-
homogeneous.

Since Computer Music is fairly diffused in the academic
field, it is perfectly natural to find a large pool of high-quality
open-source applications devoted to signal processing in
the public domain (and indeed, a good 70% of the software
mentioned in this document belongs to the open-source
public domain, and a good 50% of this software is actually

Free Software). As usual, the very nature of successful
open-source applications37 implies a large base of users/
debuggers/experts; hence, successful open-source applica-
tions often grow more rapidly and are better debugged (this
is even more so when applications are Free Software38).
However, even in this domain music applications do not yet
follow the standards: while a lot of the open-source software
constitute a model for coding and development, for some
obscure reason many open source music software develop-
ers do not analyse nor code in a professional way and they
refrain from using all the powerful development tools that the
public-domain and the Internet feature.39 Professional music
software development is still a rare (and welcome) instance
in the open-source community. On the positive side, as all
other open-source and Free Software programs, music appli-
cations stem from some precise real-world needs and are
generally better suited to face sophisticated musical requests.
Furthermore the widespread use of ASCII (text) data descrip-
tion encoding makes inter-application operation extremely
easy and natural.

6.2 Integration with existing practice and
working environments

Existing practice is a very diffused statement in music:
existing practices are important in music composition,
typography, interpretation, rehearsals, performance, analysis,
concert habits – almost any musical field operates in con-
formance (or in opposition) to some existing practice.40 Com-
puter music software is no exception: even though it is a very
recent field there are indeed several consolidated practices in
electro-acoustic music performance (we even made some
passing reference to some of them in this paper: the orches-
tra-score metaphor, the modular synthesizer model, etc.).

While it is often (wrongly) assumed that musicians will
prefer simpler software with friendlier interfaces and lack of
deeper complexity, it is interesting to notice (even if it could
sound a bit obvious) that music software designed with exist-
ing practices in mind is often more easily accepted and used
by musicians and therefore more successful – no matter how
complicate its operation is. Music production is a complex
task full of many-layered implications and musicians are cer-
tainly not afraid of facing it every day – musical instruments
are complicate interfaces which require years of practice at
all levels: in this context, computers are certainly among the

JNMRBE

37 which is well explained in Eric Raymond’s article Homesteading
the Noosphere, available from
http://tuxedo.org/esr/writings/homesteading/homesteading/
38 the philosophy of Free Software is well explained at
http://www.gnu.org/philosophy/philosophy.html
39 Perhaps a musician that devotes time to music thinks she/he
doesn’t have the time to learn software tools; unfortunately that very
same time (and much more) gets spent hunting for hard-to-catch
bugs and rewriting code.
40 this probably means that the music world is very conservative.

Making sounds with numbers 11

simplest instruments (even mere toys at times) and musicians
are certainly eager to learn them if the software is designed
with the musical context and the existing practices in mind.

References

[Arf98] Daniel Arfib. (1998). Different ways to write
digital audio effects programs. In Proc. Conf.
Digital Audio Effects (DAFX-98), Barcelona,
Spain, November.

[Dan97a] Roger B. Dannenberg. (1997). Abstract time
warping of compound events and signals. Com-
puter Music J., 21(3), 61–70.

[Dan97b] Roger B. Dannenberg. (1997). The implementa-
tion of Nyquist, a sound synthesis language. Com-
puter Music J., 21(3), 71–82.

[Dan97c] Rober B. Dannenberg. (1997). Machine tongues
XIX: Nyquist, a language for composition and
sound synthesis. Computer Music J., 21(3), 50–60.

[DT97] Roger B. Dannenberg & Nick Thompson. (1997).
Real-time software synthesis on superscalar archi-
tectures. Computer Music J., 21(3), 83–94.

[Fav98] E. Favreau. (1998). Les outils de traitement GRM
Tools. In La Terra Fertile, pages 95–98. L’Aquila,
Italy, September.

[FH97] Kelly Fitz & Lippold Haken. (1997). Sinusoidal
modeling and manipulation using lemur. Com-
puter Music J., 20(4), 44–59.

[GT97] Brad Garton & Dave Topper. (1997). RTcmix –
using CMIX in real time. In Proc. International
Computer Music Conference, pages 399–402,
Thessaloniki, Greece, ICMA.

[MD01] Dominic Mazzoni & Roger Dannenberg. (2001).
A fast data structure for diskbased audio editing.
In Proc. International Computer Music Confer-
ence, La Habana, Cuba, Sep ICMA.

[MMM+69] Max Mathews, Joan E. Miller, F. Richard Moore,
John R. Pierce, & Jean-Claude Risset. (1969).
The Technology of Computer Music. MIT Press,
Cambridge, MA.

[Moo90] F. Richard Moore. (1990). Elements of Computer
Music. Prentice-Hall, Englewood Cliffs, N.J.

[Pop93] Stephen Travis Pope. (1993). Machine tongues
XV: Three packages for software sound synthesis.
Computer Music J., 17(2), 23–54.

[Puc97] Miller Puckette. (1997). Pure data. In Proc.
International Computer Music Conference, pages
224–227, Thessaloniki, Greece, September
ICMA.

[Roa96] Curtis Roads. (1996). The Computer Music
Tutorial. MIT Press, Cambridge, Mass.

[Sch94] Bill Schottstaedt. (1994). Machine tongues XVII:
CLM: Music V meets common lisp. Computer
Music J., 18(2), 30–37.

[SS90] Xavier Serra & Julius O. Smith. (1990). Spectral
modeling synthesis: A sound analysis/synthesis
system based on a deterministic plus stochastic
decomposition. Computer Music J., 14(4),
12–24.

[VGS98] Barry L. Vercoe, William G. Gardner, & Eric D.
Scheirer. (1998). Structured Audio: Creation,
Transmission, and Rendering of Parametric Soun
Representations. Proc. IEEE, 86(5), 922–940,
May.

[VLM97] Tony S. Verma, Scott N. Levine, & Teresa H. Y.
Meng. (1997). Transient modeling synthesis: a
flexible analysis/synthesis tool for transient
signals. In Proc. International Computer Music
Conference, pages 164–167, Thessaloniki,
Greece, September ICMA.

[Zö2] Udo Zölzer, editor. (2002). Digital Audio Effects.
John Wiley and Sons, Ltd., Chichester Sussex,
UK.

JNMRBE

