Analytical mechanics (2017/2018)

Codice insegnamento
4S001102
Docente
Nicola Sansonetto
Coordinatore
Nicola Sansonetto
crediti
6
Settore disciplinare
MAT/07 - FISICA MATEMATICA
Lingua di erogazione
Inglese
Periodo
II sem. dal 1-mar-2018 al 15-giu-2018.

Orario lezioni

Vai all'orario delle lezioni

Obiettivi formativi

Il corso e` dedicato ad un approccio moderno e formale alla meccanica classica. Il principale obiettivo del corso consiste nell'introduzione di alcune tecniche di analisi globale e numerica, geometria differenziale e di sistemi dinamici al fine di formalizzare un modello di sistemi meccanici conservativi ad un numero finito di gradi di liberta`.
Alla fine del corso uno studente dovra` essere in grado di costruire un modello di fenomeni fisici conservativi per sistemi ad un numero finito di gradi di liberta`, scrivere le equazioni del moto sia da un punto di vista Lagrangiano che Hamiltoniano e ricavare le principali proprieta` dinamiche del sistema.

Programma

• Introduzione. Il corso iniziera` con un rapido ripasso di alcune nozioni di base di sistemi dinamici usando pero` il moderno linguaggio della geometria differenziale: campi vettoriali su varieta`, flusso di un campo, coniugazione di flussi. Derivata di Lie, integrali primi, foliazioni invarianti e riduzione dell'ordine. Sistemi meccanici in dimensione 1.

• Meccanica Newtoniana. La struttura geometrica dello spazio tempo di Galileo e assiomi della meccanica classica. Sistemi di particelle ed equazioni cardinali della dinamica. Campi di forze conservative. Massa in un campo centrale e il sistema dei due corpi.

• Principi variazionali. Introduzione al calcolo delle variazioni: il principio di Hamilton e l'equivalenza tra equazioni di Lagrange e di Newton per i sistemi conservativi. Trasformazione di Legendre ed equazioni di Hamilton.

• Meccanica Lagrangiana su varieta`. Sistemi vincolati: il principio di d'Alembert e le equazioni di Lagrange. Invarainza delle equazioni di Lagrange per cambiamenti di coordinate. Integrale di Jacobi. Coordinate cicliche, Teorema di Noether, integrali primi e riduzione di Routh.

• Meccanica Hamiltoniana. Equazioni di Hamilton, parentesi di Poisson. Teorema di Noether in ambiente Hamiltoniano.

• Corpi rigidi. Il gruppo delle rotazioni e sua rappresentazione matriciale. Velocita` angolare e algebra di Lie del gruppo delle rotazioni. Sistema di riferimento nello spazio e nel corpo. Equazioni di Euler.

Alcuni aspetti numerici verranno analizzati durante il corso. Il corso sara` anche accompagnato da seminari introduttivi alla meccanica geometrica, alla teoria geometrica del controllo con applicazioni robotiche e alla chirurgia robotica.

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
D.D. Holm, T. Schmah and C. Stoica Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions (Edizione 1) Oxford University Press 2009
Darryl D. Holm Geometric Mechanics, Part 1: Dynamics and Symmetry (2nd Edition) (Edizione 2) Imperial College Press 2011 978-1-84816-775-9
Darryl D. Holm Geometric Mechanics, Part 2: Rotating, translating and rolling. (2nd Edition) (Edizione 2) Imperial College Press 2011 978-1-84816-778-0
V.I. Arnol'd Mathematical Methods of Classical Mechanics Springer-Verlag 1989

Modalità d'esame

L'esame e` diviso in due parti. La prima parte (parte A) consiste in un esame scritto in cui verrano proposti alcuni quesiti di carattere applicativo o teorico. A seguire l'esame sara` completato da una discussione orale dell'elaborato scritto e da ulteriori domande sul programma.

Opinione studenti frequentanti - 2017/2018