Mathematical logic (2017/2018)

Codice insegnamento
4S001096
Docente
Peter Michael Schuster
Coordinatore
Peter Michael Schuster
crediti
6
Settore disciplinare
MAT/01 - LOGICA MATEMATICA
Lingua di erogazione
Inglese
Periodo
I sem. dal 2-ott-2017 al 31-gen-2018.

Orario lezioni

Vai all'orario delle lezioni

Obiettivi formativi

Il corso intende introdurre lo studente all'interazione tra sintassi (linguaggi e calcoli formali) e semantica (interpretazioni e modelli) com'è fondamentale sia per la matematica astratta che per l'informatica teorica.

Al termine dell'insegnamento lo studente dovrà essere in grado di produrre argomentazioni e dimostrazioni rigorose e di leggere articoli e testi (anche avanzati) relativi alla logica matematica.

Programma

Linguaggi formali della logica di prim'ordine.
Calcolo della deduzione naturale.
Logica minimale, intuitionista e classica.
Teoremi di coerenza e completezza.
Teoremi di compatezza e di Löwenheim-Skolem.
Modelli e teorie.

Al di fuori del monte ore dell'insegnamento, che comprende sia lezioni frontali che esercitazioni in aula, sono assegnati esercizi da svolgere a casa che vengono discussi durante le ore di esercitazione o di cui vengono distribuite soluzioni modello da studiare a casa.

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
Troelstra, Anne S. & Schwichtenberg, Helmut Basic Proof Theory. (Edizione 2) Cambridge University Press 2000 0-521-77911-1
David, René & Nour, Karim & Raffali, Christophe Introduction à la Logique. Théorie de la démonstration (Edizione 2) Dunod 2004 9782100067961
Cantini, Andrea & Minari, Pierluigi Introduzione alla logica : linguaggio, significato, argomentazione. (Edizione 1) Le Monnier 2009 978-88-00-86098-7
Andrea Asperti, Agata Ciabattoni Logica a Informatica McGraw-Hill 2007
van Dalen, Dirk Logic and Structure. (Edizione 5) Springer 2013 978-1-4471-4557-8
Abrusci, Vito Michele & Tortora de Falco, Lorenzo Logica. Volume 1 - Dimostrazioni e modelli al primo ordine. (Edizione 1) Springer 2015 978-88-470-5537-7
Shoenfield, Joseph R. Mathematical Logic. (Edizione 2) Association for Symbolic Logic & A K Peters 2001 1-56881-135-7
Schwichtenberg, Helmut Mathematical Logic (lecture notes). 2012

Modalità d'esame

L'esame consiste in una sola prova orale a quesiti aperti e voti in trentesimi. Le modalità d’esame non sono differenziate fra frequentanti e non frequentanti.

L'esame ha lo scopo di verificare la piena maturità circa le tecniche dimostrative e la capacità di leggere e comprendere argomenti avanzati della logica matematica.

Statistiche per i requisiti di trasparenza (Attuazione Art. 2 del D.M. 31/10/2007, n. 544)

I dati relativi all'AA 2017/2018 non sono ancora disponibili