Calcolo numerico I con laboratorio (2017/2018)

Codice insegnamento
4S004792
Docenti
Leonard Peter Bos, Giacomo Albi
Coordinatore
Leonard Peter Bos
crediti
6
Settore disciplinare
MAT/08 - ANALISI NUMERICA
Lingua di erogazione
Italiano
Periodo
II sem. dal 1-mar-2018 al 15-giu-2018.

Orario lezioni

Vai all'orario delle lezioni

Obiettivi formativi

L’insegnamento si propone di presentare, da un punto di vista analitico e computazionale, i principali metodi di base per la soluzione di equazioni non lineari, sistemi lineari, problemi di data-fitting polinomiale e metodi di integrazione numerica. L’insegnamento è corredato da una parte di laboratorio in cui vengono implementati i metodi studiati. Il linguaggio di programmazione è MATLAB che potrà essere usato attraverso il software specifico Matlab di Mathworks oppure il software open source GNU Octave. Al termine dell’insegnamento lo studente dovrà dimostrare di avere ottenuto competenze computazionali ed informatiche nell’ambito dei metodi numerici di base, e saper riconoscere quali algoritmi sono più adatti per determinati problemi numerici di base.

Programma

Nell’insegnamento verranno trattati i seguenti argomenti:

* metodi per la ricerca di zeri di funzione (bisezione, secanti, Newton e varianti)
* numeri macchina e teoria degli errori
* metodi per la risoluzione di sistemi lineari (condizionamento, eliminazione gaussiana, fattorizzazione LU, fattorizzazione di Cholesky, norme matriciali)
* interpolazione polinomiale e lineare a tratti
* quadratura con formule semplici e composite (rettangoli, trapezi, Simpson, estrapolazione di Romberg)

Si prevede l'ausilio di attività di tutorato per la correzione di esercizi assegnati durante lo svolgimento delle lezioni di laboratorio.

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
E. Süli, D. F. Mayers An Introduction to Numerical Analysis (Edizione 1) Cambridge University Press 2003
S. De Marchi Appunti di Calcolo Numerico (Edizione 1) Societa Edirice Esculapio 2011 978-88-7488-473-5
A. Quarteroni, F. Saleri Calcolo Scientifico, Esercizi e problemi risolti con MATLAB e OCTAVE Springer 2008
J. Stoer, R. Bulrisch Introduction to Numerical Analysis (Edizione 1) Springer 1993

Modalità d'esame

L’esame intende accertare che lo studente sia in grado di produrre e riconoscere dimostrazioni rigorose nell’ambito dei metodi numerici di base e sappia usare strumenti informatici in aiuto ai processi matematici di base per acquisire ulteriori informazioni. Inoltre, lo studente dovrà dimostrare di conoscere un linguaggio di programmazione e di un software specifico. La prima parte della prova si svolge in laboratorio. Lo studente dovrà implementare individualmente, entro due ore, i metodi numerici richiesti per la risoluzione degli esercizi assegnati. Il programma di questa parte prevede tutti gli argomenti trattati durante le ore di lezione teorica e di laboratorio. La prova si intende superata con un punteggio pari o superiore a 18/30. Per essere ammessi alla seconda parte della prova, orale, è necessario aver superato la parte scritta. Il voto dello scritto rimane valido sino all’inizio del semestre successivo a quello di erogazione dell’insegnamento. L’esame orale prevede una discussione degli argomenti trattati durante le ore di lezione teorica. Il voto finale è dato dalla media dei voti delle due prove.

Statistiche per i requisiti di trasparenza (Attuazione Art. 2 del D.M. 31/10/2007, n. 544)

I dati relativi all'AA 2017/2018 non sono ancora disponibili