Mathematical logic (2015/2016)

Course code
Name of lecturer
Peter Michael Schuster
Peter Michael Schuster
Number of ECTS credits allocated
Other available courses
Academic sector
Language of instruction
I semestre dal Oct 1, 2015 al Jan 29, 2016.

Lesson timetable

I semestre
Day Time Type Place Note
Tuesday 2:30 PM - 4:30 PM lesson Lecture Hall M  
Wednesday 10:30 AM - 1:30 PM lesson Lecture Hall M  

Learning outcomes

The interaction between syntax (formal languages and calculi) and semantics (interpretations and models) as is fundamental for abstract mathematics and theoretical informatics.


Formal languages of first-order predicate logic.
Calculus of natural deduction.
Minimal, intuitionistic and classical logic.
Soundness and completeness theorems.
Compactness and Löwenheim-Skolem theorems.
Models and theories.

Reference books
Author Title Publisher Year ISBN Note
Troelstra, Anne S. & Schwichtenberg, Helmut Basic Proof Theory. (Edizione 2) Cambridge University Press 2000 0-521-77911-1
David, René & Nour, Karim & Raffali, Christophe Introduction à la Logique. Théorie de la démonstration (Edizione 2) Dunod 2004 9782100067961
Cantini, Andrea & Minari, Pierluigi Introduzione alla logica : linguaggio, significato, argomentazione. (Edizione 1) Le Monnier 2009 978-88-00-86098-7
van Dalen, Dirk Logic and Structure. (Edizione 5) Springer 2013 978-1-4471-4557-8
Abrusci, Vito Michele & Tortora de Falco, Lorenzo Logica. Volume 1 - Dimostrazioni e modelli al primo ordine. (Edizione 1) Springer 2015 978-88-470-5537-7
Shoenfield, Joseph R. Mathematical Logic. (Edizione 2) Association for Symbolic Logic & A K Peters 2001 1-56881-135-7
Schwichtenberg, Helmut Mathematical Logic (lecture notes). 2012

Assessment methods and criteria

Written or oral examination, depending on the number of candidates who want to sit the exam.

Teaching aids


Student opinions - 2015/2016