Algoritmi - ALGORITMI (2010/2011)

Codice insegnamento
4S02709
Docente
Margherita Zorzi
crediti
6
Settore disciplinare
ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
Lingua di erogazione
Italiano
Periodo
II semestre dal 1-mar-2011 al 15-giu-2011.

Per visualizzare la struttura dell'insegnamento a cui questo modulo appartiene, consultare * organizzazione dell'insegnamento

Orario lezioni

II semestre
Giorno Ora Tipo Luogo Note
martedì 10.30 - 13.30 lezione Aula I  
mercoledì 10.30 - 12.30 lezione Aula I  

Obiettivi formativi

Acquisire un'adeguata conoscenza dei principali paradigmi avanzati di algoritmi per problemi di ottimizzazione combinatorica con particolare attenzione per i paradigmi che permettono di determinare soluzione approssimante per problemi di ottimizzazione combinatoria difficili.

Programma

Richiamo dei principali concetti inerenti ai problemi computazionali: descrizione, istanze, codifica, modelli precisi e modelli approssimati. Problemi computazioni di ottimizzazione. Esempi di problemi computazionali.
Richiamo dei principali concetti inerenti agli algoritmi: risorse computazionali, codifica dell'input, dimensione dell'input, definizione di tempo computazionale. Analisi caso peggiore e caso medio. Tempo di calcolo e ordini di grandezza: possibili insidie.
Tempi di calcolo e miglioramenti hardware: relazioni principali. Algoritmi efficienti e problemi trattabili.

Paradigma divide et impera
--------------------------
Richiamo struttura. Analisi complessità. Esempi di applicazione: prodotto tra due numeri, Prodotto fra due matrici.
Introduzione al problema della mediana e, generalizzazione, al problema della selezione. Risoluzione del problema della selezione.

Paradigma greedy
----------------
Richiamo struttura. Esempio di applicazione per il problema dell'albero minimo di ricoprimento. Richiamo sulla struttura dati per insiemi disgiunti. Esempio di applicazione per il problema dei cammini minimi da sorgente singola (algoritmo di Dijkstra).
Introduzione ai matroidi: definizione, proprietà fondamentali. Problema del Massimo di un matroide pesato. Dimostrazione che la tecnica greedy determina sempre la soluzione ottima per il problema del Massimo di un matroide pesato.
Valutazione due soluzioni all'esercizio di ricerca elemento in una matrice ordinata.
Uso dei matroidi per la risoluzione del problema di programmazione di task unitari su singolo processore. Limiti della rappresentazione con i matroidi. Esempi di problemi risolvibili con tecnica greedy che non sono rappresentabili da matrodidi.
Approfondimento: Codifica di Huffman.

Tecnica backtracking
--------------------
Introduzione. Schema generale. Aspetti cruciali.
Applicazione della tecnica al problema dello zaino con ripetizione. Analisi correttezza e complessità.
Introduzione uso della tecnica al problema dell'inviluppo convesso: algoritmo di Graham. Uso della tecnica backtracking al problema del string matching: algoritmo di Knuth, Morris & Pratt.

Tecnica branch & bound
----------------------
Introduzione. Schema generale. Aspetti cruciali.
Scelta ordine di visita dei figli: strategia hill climbing. Tecnica come nuova tecnica ricerca in un albero: strategia best-first.
Applicazione della tecnica al problema dell'assegnamento e al problema dello zaino.
Applicazione della tecnica al problema del commesso viaggiatore come esempio di funzione lower bound non banale.

Paradigma programmazione dinamica
---------------------------------
Introduzione. Schema generale. Aspetti cruciali. Applicazione della tecnica al problema della massima sottosequenza crescente. Applicazione della tecnica al problema del string matching approssimato e al problema dello zaino.
Analisi di esempi di applicazione. Pattern ricorrenti per la determinazione di sottoproblemi.
Tecnica memoization (annotazione)
Introduzione e analisi vantaggi svantaggi.

Algoritmi probabilistici
------------------------
Definizione. Algoritmi probabilistici numerici, algoritmi di Monte Carlo e algoritmi di Las Vegas. Esempi di problemi risolti con tali algoritmi: Buffon's needle, Pattern Matching e Universal hashing.


Tecnica ricerca locale
----------------------
Introduzione e studio caso applicazione al problema dell'albero minimo di ricoprimento. Risoluzione del problema dell'ordinamento mediante tecnica di ricerca locale: ordinamento per inserimento e ShellSort.
Tecniche avanzate di ricerca locale: Simulated annealing e Tabù search.


Algoritmi di approssimazione
----------------------------
Classi NPO e PO. Errore relatio e indice di performance. Algorimo r-approssimante. Problema r-approssimabile.
Studio dell'approssimabilità del problema Min Vertex Cover: dall'algoritmo greedy all'algoritmo pseudo-casuale.

Modalità d'esame

Prova scritta, parte della prova complessiva del corso qualifying Algoritmi (altro modulo: Complessità).

Materiale didattico

Documenti